A Review of Iron and Cobalt Porphyrins, Phthalocyanines, and Related Complexes for Electrochemical and Photochemical Reduction of Carbon Dioxide

نویسندگان

  • Gerald F. Manbeck
  • Etsuko Fujita
چکیده

This review summarizes research on the electrochemical and photochemical reduction of CO2 using a variety of iron and cobalt porphyrins, phthalocyanines, and related complexes. Metalloporphyrins and metallophthalocyanines are visible light absorbers with extremely large extinction coefficients. However, yields of photochemically-generated active catalysts for CO2 reduction are typically low owing to the requirement of a second photoinduced electron. This requirement is not relevant to the case of electrochemical CO2 reduction. Recent progress on efficient and stable electrochemical systems includes the use of FeTPP catalysts that have prepositioned phenyl OH groups in their second coordination spheres. This has led to remarkable progress in carrying out coupled proton-electron transfer reactions for CO2 reduction. Such ground-breaking research has to be continued in order to produce renewable fuels in an economically feasible manner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Symmetrical Tetraphenyl Porphyrin Metal Complexes and Their Spectroscopic Studies

Porphyrins molecules are gaining importance in the present era. Porphyrins are important part of biological molecules like hemoglobin and chlorophyll .Photo system 1 and photo system 2 is important sunlight trap in chloroplast. Electron transport chain is a series of chemical reaction in which energy is formed in the form of ATP (Adenosine triphosphate).The members of electron transport chains ...

متن کامل

Cobalt Porphyrin Catalyzed Reduction of CO2. Radiation Chemical, Photochemical, and Electrochemical Studies

Several cobalt porphyrins (CoP) have been reduced by radiation chemical, photochemical, and electrochemical methods, in aqueous and organic solvents. In aqueous solutions, the CoIP state is stable at high pH but is shorter lived in neutral and acidic solutions. Stable CoIP is also observed in organic solvents and is unreactive toward CO2. One-electron reduction of CoIP leads to formation of a s...

متن کامل

Interfacial photoreduction of supercritical CO2 by an aqueous catalyst.

Carbon dioxide (CO2) emissions currently represent a major concern. Accordingly, the electrochemical reduction of CO2 is a reaction of major relevance and also of great challenges. Considering the redox potentials required for reducing CO2, multi-electron-transfer, multiproton reactions are the most viable pathways for driving CO2 reduction. [2] Nonetheless, catalysts must be employed to overco...

متن کامل

Photochemical CO2-reduction catalyzed by mono- and dinuclear phenanthroline-extended tetramesityl porphyrin complexes.

We here present a comprehensive study on the light-induced catalytic CO2 reduction employing a number of mono- and dinuclear complexes with a phenanthroline-extended tetramesityl porphyrin ligand (). A stepwise synthesis of heterodinuclear complexes is possible because the phenanthroline moiety of the ligand can selectively coordinate a second metal center, e.g. Ru(tbbpy)2(2+) fragment, while a...

متن کامل

Photochemical Transformations Involving Porphyrins and Phthalocyanines

2 1. Introduction Photochemistry of the porphyrins and their relatives has been largely inspired by photosynthetic processes in nature. As a result of this, most current studies generally utilize the chemistry of magnesium and zinc porphyrin analogues. Especially, magnesium tetrapyrrole chelates, i.e. magnesium porphyrins and phthalocyanines have found wide interest. This is primarily related t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015